top of page

Lean Manufacturing


When you think of manufacturing, what comes to mind? A dark, dirty picture of dangerous factories filled with workers and machines repeatedly doing the same thing over and over again? Well think again!

The information technology (IT) revolution has finally come to factory floors around the world. Today, manufacturing is becoming highly-automated and IT-driven or simply put, “smart.” Every day, advances in modern manufacturing technologies make factories smarter, safer and also more environmentally sustainable. Progressive businesses will strategically investing to transform their operations from cost centers into smart manufacturing profit centers that will dramatically increase their sales.

Today, the U.S. has the world’s oldest industrial base with no plan to help American businesses construct or modernize factories with 21st century smart manufacturing technologies. To encourage businesses to make such major long-term capital investments, the U.S. will need a business climate for manufacturers that is at least equal to and ideally better than the rest of the world. To remain competitive and retain its leadership in the world economy, America needs “Smarter Factories.”

The concepts aren’t entirely new to the industry (e.g., machine-to-machine), but certainly recent technology advances allow us to bring together data capture, connectivity, remote control and, most importantly, analytics to deliver on the promise of cyber-physical manufacturing sooner than you might think. Certainly, our inquiry activity with research clients has been robust on this topic.

As a result of these ongoing industry conversations about smart manufacturing, we recently published a plans scape report on the subject. This methodology frames the why, what, how and who of an investment initiative. The objective is to give our research clients a jump start on creating an investment plan. In this article, we look at the why of investing in smart manufacturing.

Executives accept the inevitability of a cyber-physical manufacturing future and understand intuitively the competitive value of having responsive operational capabilities, but building the business case from the ground up can be tricky. In order to assist clients in the process, IDC Manufacturing Insights encourages companies to begin with the construct of overall equipment effectiveness (OEE). Those familiar with the metric know it includes considerations for efficiency, utilization and yield.

Efficiency: Beating the Plan

Efficiency is a measure of throughput usually expressed as actual versus expected (or standard). So if the expected throughput of a machine is 10 units per hour and it produces 11, it is considered 110% efficient. Efficiency is obviously important because if a machine can produce more, there are more products to sell without adding new capacity. However, for the purpose of investing in smart manufacturing, efficiency should be thought of in several dimensions beyond just the machine efficiency:

  • Labor efficiency—factory personnel are able to manage more machines.

  • Material efficiency—optimizing set ups and production sequences so less material is sacrificed to scrap.

  • Energy efficiency—optimizing the consumption of energy in the process which may include running the equipment slower.

Collectively, there are opportunities to improve efficiencies across all of these dimensions through the application of smart manufacturing principles.

Utilization: Improving Availability

An efficient machine is useless if it is broken. Manufacturers have often calculated productivity as efficiency multiplied by utilization. Utilization is simply a measure of the cumulative time of operation divided by the total elapsed time. So if our example machine is available 99% of the time, then the productivity is 108.9% (110% multiplied by 99%).

Availability comes down to keeping the equipment running. Asset intelligence—understanding the operating condition, predicting failure, interdicting to minimize disruption—is the common categorization and is integrated to a company's enterprise asset management (EAM) system. There are varying levels of asset management (as shown in Table 1)

Asset management can extend beyond just the operating equipment to include tools, tooling, jigs, fixtures and inspection equipment—all of which need to be available and well maintained. This domain is also a common starting point for many companies to test how to deploy and use smart manufacturing-related technologies as it is less invasive to the production process and can produce quick paybacks.

Quality: Real Time Measurement

The last component of effectiveness is reliability. There has been a lot of progress in transitioning measurement tools and equipment—calipers for mechanical, environmental test chambers for electronics, etc.—to provide digital recording. And the information is getting more complex with visual inspection systems sending calibrated image files for example. Smart manufacturing initiatives will incorporate and integrate those digital readings and other outputs into a more disciplined root cause analysis and corrective action capability.

Improving reliability isn’t just about integrating the data from inspection equipment. One of the capabilities manufacturing companies describe is an ability to support design for experiments (DFE). The concept is that if plant management believes they may have a problem, they can turn on specific pieces of data acquisition and test the results against upper and lower limits, better identifying a set of conditions that may be causing a quality problem. DFE has always been part of the Six Sigma methodologies, but has been a very manual proposition to execute. Smart manufacturing approaches will assist in automating this critical quality function.

Of course, one can also extend beyond just testing for quality parameters. Experiments related to asset operation would be available, but perhaps the most interesting could be A/B testing to improve throughput (efficiency). As an example, consider a plant that has two production lines that are equipped in a similar fashion. Operations management wants to decide the best way to calibrate and operate those lines to produce product X. One line uses a set of parameters (e.g., line speed, staffing, material quality)—call that test A—and the other uses a different set (test B), by comparing the results for equipment, material, labor and energy efficiency; the company can choose the best set up.

At capacity—if the company is currently selling everything it produces and could sell more if it could produce more, the consideration is quite simple—increased production means increased revenue.

Customer satisfaction—having smart manufacturing capabilities enables an enterprise to be more responsive to customer needs. Delivering a quality product on time builds customer loyalty so improved capabilities can be critical to gaining a larger share of existing customers’ budgets and in stealing away customers from the competition.

Capital expenditure avoidance—A bit more of a bigger-picture proposition but if the company has plans to significantly increase revenues, improving throughput can mean that new capacity requirements can be optimized, saving precious cash.

Product variety—With customers increasingly asking for personalized or even customized products, having smart manufacturing capabilities may be critical to being able to meet those requirements and grow revenue.

It should be apparent that revenue based justification can be highly situational. Using revenue (or more accurately, the gross margin on that revenue) to justify investment will require building models that capture the necessary set of underpinning assumptions and will stand up to the inevitable scrutiny from management.

Cost Reductions

The more straightforward set of benefits for justification lie in the potential for lowering overall costs. There is a wide range of possibilities, but we offer several to consider:

Material costs—by increasing material efficiencies, raw material scrap can be reduced. This will vary widely by type of manufacturing and circumstances.

Energy efficiencies—Understanding the impact of production decisions on energy consumption can drive lower costs. IDC Manufacturing Insights expects savings in the range of 10% to 30%.

Labor costs—Smart manufacturing will enable employees to control a higher number of machines. A good rule of thumb would be the elimination of one employee for every eight pieces of equipment instrumented.

Maintenance costs—applying more predictive analysis as well as better evaluating maintenance personnel should lower maintenance costs from between 5% and 65%. There is a wide range based on both the complexity of the equipment and the current maturity levels of the company. For example, if most of the maintenance is done on a break/fix or preventative basis, there is opportunity for large savings.

Cost of adverse quality—the costs of poor quality are well documented with a good rule of thumb being that every 1% increase in reliability translates to a 1.5% improvement in margins over the long term.

Each justification will be specific to company circumstances, so not every element needs to be included. However, in many cases there will be more than enough potential benefit to justify investment.


Who Am I?

This is a website about intelligent manufacturing and artificial intelligence. It was written by graduate students in Manufacturing Systems Engineering at California State University Northridge..

Other Posts
More BI on the web
Follow Me
  • Facebook Basic Black
  • Twitter Basic Black
  • YouTube Basic Black
Search By Tags
No tags yet.
bottom of page